Completely positive linear maps on maximal and minimal operator system structures
نویسندگان
چکیده
منابع مشابه
Irreducible Positive Linear Maps on Operator Algebras
Motivated by the classical results of G. Frobenius and O. Perron on the spectral theory of square matrices with nonnegative real entries, D. Evans and R. Høegh-Krohn have studied the spectra of positive linear maps on general (noncommutative) matrix algebras. The notion of irreducibility for positive maps is required for the Frobenius theory of positive maps. In the present article, irreducible...
متن کاملComparison of Information Structures and Completely Positive Maps
A theorem of Blackwell about comparison between information structures in classical statistics is given an analogue in the quantum probabilistic setup. The theorem provides an operational interpretation for tracepreserving completely positive maps, which are the natural quantum analogue of classical stochastic maps. The proof of the theorem relies on the separation theorem for convex sets and o...
متن کاملCovariant Completely Positive Linear Maps between Locally C-algebras
We prove a covariant version of the KSGNS (Kasparov, Stinespring, Gel’fand,Naimark,Segal) construction for completely positive linear maps between locally C-algebras. As an application of this construction, we show that a covariant completely positive linear map ρ from a locally C-algebra A to another locally C -algebra B with respect to a locally C-dynamical system (G,A,α) extends to a complet...
متن کاملGluing of completely positive maps
Gluings of completely positive maps (CPMs) are defined and investigated. As a brief description of this concept consider a pair of ‘evolution machines’, each with the ability to evolve the internal state of a ‘particle’ inserted into its input. Each of these machines is characterized by a channel describing the operation the internal state has experienced when the particle is returned at the ou...
متن کاملInterpolation by Completely Positive Maps
Given commuting families of Hermitian matrices {A1, . . . , Ak} and {B1, . . . , Bk}, conditions for the existence of a completely positive map Φ, such that Φ(Aj) = Bj for j = 1, . . . , k, are studied. Additional properties such as unital or / and trace preserving on the map Φ are also considered. Connections of the study to dilation theory, matrix inequalities, unitary orbits, and quantum inf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2014
ISSN: 1846-3886
DOI: 10.7153/oam-08-59